Academic Course Description

BHARATH UNIVERSITY

Faculty of Engineering and Technology
Department of Electronics and Communication Engineering

BEC015 - ASIC DESIGN

Sixth Semester

Course (catalog) description

An **application-specific integrated circuit (ASIC)** is an integrated circuit customized for a particular use, rather than intended for general-purpose use. In this course, the reader is introduced to various ASIC architectures, ASIC design flow, issues in ASIC design and testing of ASICs and also about SOC Design

Compulsory/Elective course: Elective for ECE students

Credit hours : 3 credits

Course Coordinator : Ms.M.Jasmin, Asst. Professor, Department of ECE

Instructor(s) :

Name of the instructor	Class handling	Office location	Office phone	domain:	Consultation
				@bharathuniv.ac.in	
Ms.M.Jasmin	IV	SA 006		jasmine.ece	12.30-1.30 PM

Relationship to other courses

Pre – requiste : BEC 302- Principles of Digital Electronics and BEC 402-Electronic Circuits

Assume Knowledge : Basic knowledge in Digital System Design and Electronic circuits

Following courses : Nil

Syllabus Contents

INTRODUCTION TO ASICS, CMOS LOGIC, ASIC LIBRARY DESIGN

9 HOURS

Types of ASICs - Design flow - CMOS transistors- CMOS Design rules - Combinational logic Cell Sequential logic cell - Transistor as Resistors - Transistor parasitic capacitance - Logical effort - Library cell design - Library architecture.

PROGRAMMABLE ASICS, PROGRAMMABLE ASIC LOGIC CELLS AND PROGRAMMABLE ASIC I/O CELLS 9 HOURS

Anti fuse - Static RAM - EPROM and EEPROM technology - PREP benchmarks - Actel ACT - Xilinx LCA - Altera FLEX - Altera MAX DC & AC inputs and outputs - Xilinx I/O blocks.

PROGRAMMABLE ASIC INTERCONNECT, PROGRAMMABLE ASIC 09 DESIGN SOFTWARE AND LOW LEVEL DESIGN 9 HOURS

Entry: Actel ACT -Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX – Design systems - Logic Synthesis - Half gate ASIC -Low level design language - PLA tools EDIF- CFI design representation.

SILICON ON CHIP DESIGN

9 HOURS

Voice over IP SOC - Intellectual Property – SOC Design challenges- Methodology and design-FPGA to ASIC conversion – Design for integration-SOC verification-Set top box SOC.

PHYSICAL AND LOW POWER DESIGN

9 HOURS

Over view of physical design flow- tips and guideline for physical design- modern physical design techniques- power dissipation-low power design techniques and methodologies-low power design tools- tips and guideline for low power design.

Text book(s) and/or required materials

REFERENCES:

- R1 M.J.S. Smith, —Application Specific Integrated Circuits, Pearson Education, 2008
- R2 Wayne Wolf, —FPGA-Based System Design, Prentice Hall PTR, 2009.
- R3 Farzad Nekoogar and Faranak Nekoogar, —From ASICs to SOCs: A Practical Approach, Prentice Hall PTR, 2003.
- R4 www.vhdl.org/rassp/vhdl/quidelines/DesignReq.pdf

Computer usage: Nil

Professional component

General - 0%
Basic Sciences - 0%
Engineering sciences & Technical arts - 0%
Professional subject - 100%

Broad area: Communication | Signal Processing | Electronics | VLSI | Embedded

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd Week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd Week	Session 15 to 27	2 Periods
3	Model Test	April 3 rd Week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve					
engineering problems:	Н	М	L		
1 Recognize need for programmable devices.	a,h	c,e,f,g,i	k		
2.Describe architecture of programmable devices.	c,g,j	a	b,i		
3.Explain programmable methodologies.	b,k	a, c,g,h,i	1		
4. Recall IC fabrication techniques vis-à-vis CMOS switch	b,c	a,e,i,k	1		
5. Relate design and implementation flow for PLDs		e,f,g,k	b,i		
low power design techniques and methodologies.	f	d,e,g	ı		

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture

Session	Topics	Problem Solving (Yes/No)	Text / Chapter
UNITI : INTRODU	UCTION TO ASICS, CMOS LOGIC, ASIC LIBRAR		•
1,2	Types of ASICs & Design flow	No	R1-Chapter 1
3	CMOS transistors & CMOS Design rules	No	R1-Chapter 2
4	Combinational logic Cell	No	1 '
5	Sequential logic cell	No	
6	Transistor as Resistors - Transistor parasitic capacitance	No	-
7	Logical effort	No	
8	Library cell design	No	R1-Chapter 3
9	Library architecture.	No	
UNIT II PROGRA CELLS	MMABLE ASICS, PROGRAMMABLE ASIC LOG	C CELLS AND PROC	GRAMMABLE ASIC I/O
10	Anti fuse	No	R1-Chapter 4
11	Static RAM - EPROM and EEPROM technology, PREP benchmarks	No	- -
12	Actel ACT	No	R1-Chapter 5
13	Altera FLEX	No	
14	Altera MAX	No	
15,16	DC & AC inputs and outputs	No	
17,18	Xilinx I/O blocks	No	R1-Chapter 6
UNIT III PROGRA	AMMABLE ASIC INTERCONNECT, PROGRAMINENTRY	IABLE ASIC DESIGN	SOFTWARE AND LOW
19	Actel ACT	No	R1-Chapter 7
20	Xilinx LCA	No	
21	Xilinx EPLD	No	
22	Altera MAX 5000 and 7000	No	
23	Altera MAX 9000, Altera FLEX	No	
24	Design systems & Logic Synthesis	No	R1-Chapter 8
25	Half gate ASIC	No	
26	Low level design language, PLA tools	No	R1-Chapter 9
27	EDIF- CFI design representation.	No	
UNITIV- SILICON	I ON CHIP DESIGN		1
28,29	Voice over IP SOC - Intellectual Property	No	R3 –Chapter 1
30,31	SOC Design challenges- Methodology and design	No	-
32	FPGA to ASIC conversion	No	R3 –Chapter 2
33	Design for integration	No	R3 –Chapter 3
34,35	SOC verification	No	
36	Set top box SOC	No	
	AL AND LOW POWER DESIGN	<u> </u>	
37	Over view of physical design flow	No	R3 Chapter 4

38	Tips and guideline for physical design	No	
39,40	modern physical design techniques	No	
41,42	power dissipation -low power design techniques and methodologies	No	R3 Chapter 5
43	low power design tools	No	
44,45	tips and guideline for low power design.	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

Formal face-to-face lectures
 Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	10%
Cycle Test – II	-	10%
Model Test	-	25%
Attendance	-	5%
Final exam	-	50%

Prepared by: M.Jasmin, Assistant Professor, Department of ECE Dated:

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a) an ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) an ability to identify, formulate, and solve engineering problems
- c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d)an ability to design and conduct experiments, as well as to analyze and interpret data
- e)an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- f)an ability to apply reasoning informed by a knowledge of contemporary issues
- g)an ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) an ability in understanding of professional and ethical responsibility and apply them in engineering practices
- i) an ability to function on multidisciplinary teams
- j) an ability to communicate effectively with the engineering community and with society at large
- k) an ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics and Communication Engineering.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in Electronics and Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new Electronics and Communication Engineering Technologies through self-directed professional development and post-graduate training or education

PEO4: SKILL:

To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engineering.

Course Teacher	Signature		
Ms M.Jasmin			

Course Coordinator	Academic Coordinator		Professor In-Charge		HOD/ECE	
(MsJasmin)	()	()	(Dr M.Sundararajan)	